
FULL STACK
DEVELOPMENT

IT Shaala

Course duration : 4 - 6 months

Offline/Online
Program

500 Hours
of Live Classes

LMS Access
Internship

Certificate

MASTER MERN STACK DEVELOPMENT

Using MERN

4.9
Google Rating

Table of contents

01 Founder’s Message

02 About IT Shaala

03 Course Content

04 Reviews

05 Placement

06 Life at IT Shaala

Founder’s Message
IT Shaala is a Leading IT Training Provider for Web Development & Software
Development Courses in Pune. It is one of the best Online/Classroom Training
Institute, which provides High-Quality Industry Level Training with Real Time
Projects. IT Shaala is Institute which broadcasts IT training from basic to
advanced technologies.

IT Shaala has specially designed Job Oriented Programme for "Freshers" and
"Job Seekers". We provide training by Expert Trainers who are having 15+ years
of industry experience, who guide the candidate with the best knowledge and work
culture of most IT companies. The training would be accompanied by live project
and placement support, which makes the candidates ready to be absorbed in the
industry. Our Institute conjointly gives a chance within their educational programs
to meet the needs with projected desires of quick developing networking trade.

“
“

As you embark on your journey
from student to professional,
remember that every challenge
is an opportunity to grow and excel.

About IT Shaala

Scope in the industry

React
Developer

Mongo DB
Developer

MERN Stack
Developer

Node Js
Developer

Aim
At IT Shaala, our aim is to empower individuals with
the knowledge and skills needed to thrive in the
fast-paced world of information technology.
We strive to provide accessible and practical
education that opens doors to new opportunities.

Vision
Our vision at IT Shaala is to be a trusted leader in
IT education, inspiring lifelong learning and driving
positive change in individuals' lives. We envision a
future where everyone has the chance to excel in the
digital age, regardless of their background or
circumstances.

Mission
Our mission at IT Shaala is simple: to deliver high-quality
IT training that transforms lives. We're dedicated to
fostering a supportive and inclusive learning environment
where students can grow personally and professionally,
reaching their full potential in the world of technology.

Course SyallabusCourse Syallabus

Introduction to MERNIntroduction to MERN

4. DNS and how it works?

5. DNS and how it works?

6. DNS and how it works?

HTML HTML
7. Tables

8. Forms

9. HTML5 Semantic Elements

10. Multimedia

11. HTML Validation and Best Practices

1. How does Internet works?

2. What is HTTP?

3. Browsers and how they work?�

1. Introduction to HTML�

2. HTML Document Structure�

3. Text Formatting�

4. Lists�

5. Links and Anchors�

6. Images�

a. What is HTML?

b. Structure of an HTML document

c. Basic HTML tags and elements�

a. Document type declaration

b. <html>, <head>, and <body> tags

c. Headings, paragraphs, and line breaks�

a. <h1> to<h6> headings

b. <p> and elements

c. Bold () and italic (<i>) text�

a. Unordered lists (and)

b. Ordered lists (and)

c. Definition lists (<dl>, <dt>, and<dd>)�

a. Creating hyperlinks (<a> tag)

b. Linking to external websites

c. Linking within the same page (anchors)�

a. Embedding images (tag)

b. Image attributes (source, alt text, width,

height)�

a. Creating tables (<table>, <tr>, and <td>)

b. Table headers (<th>)

c. Table captions (<caption>)�

a. Building forms (<form> tag)

b. Text input fields (<input type="text">)

c. Checkboxes (<input type="checkbox">)

d. Radio buttons (<input type="radio">)

e. Select dropdowns (<select> and <option>)

f. Submit buttons (<input type="submit">)�

a. <header>, <nav>, <footer>

b. <section>, <article>, <aside>

c. <figure> and <figcaption>

d. <main>, <mark>, <time>�

a. Embedding videos (<video> tag)

b. Adding audio (<audio> tag)

c. Working with iframes (<iframe> tag)�

a. Validating HTML code

b. Organizing code using indentation and

comments

c. Using semantic HTML for accessibility�

CSS CSS

1. Introduction to Bootstrap �

Bootstrap Bootstrap

1. Introduction to CSS

�

7. CSS Units and Measurements�

�

8. CSS Transitions and Animations�

�

9. Responsive Web Design��

�

10. CSS Frameworks (Optional)��

�

11. CSS Preprocessors (Optional)

�

12. CSS Best Practices and Optimization

�

2. CSS Selectors

�

a. What is CSS and why is it used?

b. CSS syntax and rule structure

c. Inline, internal, and external CSS�

a. Element selectors

b. Class selectors

c. ID selectors

d. Attribute selectors

e. Pseudo-classes and pseudo-elements�

3. CSS Box Model

�

�

4. Typography

�

�

5. Colors and Backgrounds

�

�

6. Layout and Positioning

�

�

a. Understanding the box model concept

b. Margin, border, padding, and content areas

c. Box-sizing property�

a. Font properties (family, size, weight, style)

b. Text color, alignment, and decoration

c. Working with Google Fonts�

a. Color values and color names

b. Hexadecimal and RGB color codes

c. Background properties (color, image, position,

 repeat)�

a. Display property and values (block, inline,

 inline-block)

b. Float and clear properties

c. Position property (relative, absolute, fixed)

d. CSS Grid and Flexbox layouts�

a. Absolute units (pixels, inches, centimeters)

b. Relative units (percentages, em, rem)

c. Viewport units (vw, vh, vmin, vmax)�

a. Transition properties (duration, delay, timing

function)

b. Transform properties (translate, rotate, scale)

c. Keyframe animations�

a. Media queries and breakpoints

b. Building responsive layouts

c. Mobile-first vs. desktop-first approach�

a. Introduction to popular CSS frameworks like

 Bootstrap or Foundation

b. Utilizing pre-built CSS classes and

 components�

a. Introduction to CSS preprocessors like Sass

 or Less

b. Nesting, variables, mixins, and functions�

a. Efficient CSS coding techniques

b. Minification and optimization tools

c. Browser compatibility and vendor prefixes�

a. What is Bootstrap and why is it used?

b. Benefits of using Bootstrap for web

 development�

c. Bootstrap grid system and responsive design

2. Setting Up Bootstrap�

7. Forms and Form Components�

8. Bootstrap Components�

9. Bootstrap Icons and Glyphicons��

10. Customizing Bootstrap��

11. Responsive Design with Bootstrap��

12. Bootstrap Best Practices and Resources��

3. Bootstrap Grid System�

4. Typography and Text Styling�

5. Buttons and Badges�

6. Navigation Components�

1. Introduction to Javascript �

JavaScript JavaScript

a. What is JavaScript and its role in web

 development?

 �

a. Downloading Bootstrap or using a CDN

b. Linking Bootstrap CSS and JavaScript files

c. Understanding the Bootstrap file structure�

a. Creating responsive layouts with rows and

 columns

b. Understanding container classes (container,

 container-fluid)

c. Applying column sizes and breakpoints�

a. Using Bootstrap typography classes

b. Working with headings, paragraphs, and

 inline text

c. Text alignment, emphasis, and transformations�

a. Creating buttons with different styles and sizes

b. Button groups and dropdowns

c. Adding badges to highlight information�

a. Building navigation bars (navbar) and menus

b. Responsive navigation with collapsing menus

c. Breadcrumbs, pagination, and tabs�

a. Styling HTML forms with Bootstrap classes

b. Input fields, checkboxes, radio buttons, and

 select dropdowns

c. Form validation and feedback messages�

a. Working with alerts, badges, and labels

b. Creating panels and cards

c. Accordion, modal, and carousel components�

a. Adding icons using Bootstrap Icons or

 Glyphicons

b. Icon classes and customization options�

a. Overriding Bootstrap styles with custom CSS

b. Modifying Bootstrap variables and Sass files

c. Creating a custom Bootstrap theme�

a. Understanding responsive breakpoints

b. Hiding and showing elements on different

 devices

c. Creating responsive images and media�

a. Following Bootstrap coding conventions

b. Troubleshooting common issues

c. Additional Bootstrap resources and

 documentation�

b. JavaScript in the browser and on the server

 (Node.js)

c. Setting up a development environment�

1. Introduction to Node.js

Node JS Node JS

a. What is Node.js and its key features?

b. Understanding the event-driven,

 non-blocking architecture

�

2. JavaScript Basics�

7. Asynchronous JavaScript�

8. Error Handling and Debugging�

9. Working with JSON and APIs��

10. Browser Storage��

11. JavaScript Modules and Bundlers��

12. JavaScript Best Practices��

3. DOM Manipulation�

4. Working with Functions�

5. Arrays and Iteration�

6. Object-Oriented JavaScript�

a. Variables, data types, and operators

b. Control flow (if statements, loops,

 switch statements)

c. Functions and scope

d. Working with arrays and objects�

a. Introduction to the Document Object Model

b. Selecting and manipulating HTML elements

c. Modifying content, styles, and attributes

d. Handling events and event listeners�

a. Function declarations and expressions

b. Parameters and return values

c. Arrow functions

d. Higher-order functions and callbacks�

a. Array methods (push, pop, shift, unshift, etc.)

b. Looping through arrays (for loop, forEach,

 map, filter)

c. Array manipulation and transformation�

a. Object literals and properties

b. Constructors and the 'new' keyword

c. Prototypes and inheritance

d. Classes and ES6 syntax�

a. Introduction to asynchronous programming

b. Callback functions and the event loop

c. Promises and async/await

d. Fetch API and working with AJAX�

a. Understanding JavaScript errors

b. Debugging techniques and tools

c. Error handling with try-catch blocks

d. Console methods and logging�

a. Introduction to JSON

b. Making HTTP requests with

 XMLHttpRequest and Fetch API

c. Parsing JSON data

d. Working with RESTful APIs�

a. Working with cookies

b. Local Storage and Session Storage

c. Storing and retrieving data from the browser�

a. Organizing code into modules

b. Import and export statements

c. Introduction to module bundlers

 (Webpack, Rollup)�

a. Clean code principles and best practices

b. Code organization and naming conventions

c. Performance optimization techniques

d. Common JavaScript pitfalls and how to

 avoid them�

 c. Installing Node.js and setting up a

 development environment

1. Introduction to MongoDB

Mongo DB Mongo DB

2. Node.js Basics�

3. Modules and CommonJS�

4. Asynchronous Programming with Node.js�

5. File System Operations�

6. Building HTTP Servers�

a. Working with the Node.js REPL

 (Read-Eval-Print Loop)

b. Writing and running simple Node.js scripts

c. NPM (Node Package Manager) and

 managing dependencies�

a. Introduction to modules and the

 CommonJS module system

b. Exporting and importing modules

c. Core modules vs. external modules�

a. Understanding the non-blocking I/O model

b. Callbacks and handling asynchronous

 operations

c. Promises and async/await for asynchronous

 control flow�

a. Reading and writing files using the fs module

b. Working with directories and file paths

c. Synchronous vs. asynchronous file operations�

a. Creating an HTTP server using the http module

b. Handling HTTP requests and responses

c. Routing and middleware concepts�

7. Express.js Framework�

8. Working with Databases�

9. Working with APIs�

10. Authentication and Authorization�

a. Introduction to Express.js as a web

 application framework

b. Setting up an Express.js server

c. Handling routes, requests, and responses

d. Middleware and error handling�

a. Connecting to databases

 (e.g., MongoDB, MySQL) with Node.js

b. Performing CRUD operations

 (Create, Read, Update, Delete)

c. Using ORMs (Object-Relational Mappers)

 with Node.js�

a. Consuming and integrating with external

 APIs

b. Making HTTP requests with Node.js

 (using axios, node-fetch, etc.)�

a. Implementing user authentication and

 authorization

b. Using libraries like Passport.js for

 authentication strategies

c. Implementing JWT (JSON Web Tokens) for

 session management�

11. Websockets and Real-time Applications�

12. Deployment and Scaling�

a. Introduction to Websockets and real-time

 communication

b. Building a real-time chat application with

 Socket.io

c. Broadcasting events and handling

 real-time updates�

a. Deploying Node.js applications to

 production servers

b. Configuring environment variables

c. Load balancing and scaling strategies�

a. What is MongoDB and its key features?

b. Understanding NoSQL databases and

 MongoDB's document-based approach�

c. Installing MongoDB and setting up a

 development environment

2. MongoDB Data Modeling� 4. Querying in MongoDB�

3. CRUD Operations in MongoDB�

a. Document structure in MongoDB

b. Designing collections and documents

c. Relationships between documents

 (embedded vs. referencing)�

a. Creating a database and collections

b. Inserting documents

c. Querying documents using find() and operators

d. Updating and deleting documents�

a. Query operators and their usage

b. Sorting and limiting results

c. Aggregation framework for complex queries

d. Indexing and improving query performance�

5. MongoDB and Node.js�
a. Connecting a Node.js application to

 MongoDB

b. Using the MongoDB Node.js driver

 (or an ORM like Mongoose)

c. Performing CRUD operations from Node.js�

1. Introduction to Express.js

Express Express

a. What is Express.js and its role in web

 development?

b. Understanding the Node.js and Express.js

 relationship

c. Installing Express.js and setting up a

 development environment�

2. Building a Basic Server

5. Templating Engines

6. Working with Forms and Data

7. Middleware for Authentication and

 Authorization

8. Error Handling and Logging

3. Middleware in Express.js

4. Routing in Express.js

a. Creating an Express.js server

b. Handling HTTP requests and responses

c. Routing and handling different routes�

a. Understanding middleware and its role in

 Express.js

b. Writing custom middleware functions

c. Implementing error handling middleware�

a. Implementing route handlers for different

 HTTP methods (GET, POST, etc.)

b. Creating dynamic routes with route parameters

c. Using query parameters and request body data�

a. Introduction to templating engines in

 Express.js (such as EJS or Handlebars)

b. Rendering dynamic views and passing data

 to templates

c. Layouts, partials, and template inheritance�

a. Handling form submissions in Express.js

b. Validating form data and displaying

 validation errors

c. Processing and storing data in a database�

a. Implementing user authentication with

 middleware (such as Passport.js)

b. Managing user sessions and cookies

c. Protecting routes with authorization

 middleware�

a. Handling errors in Express.js applications

b. Implementing error logging and debugging

 techniques

c. Using third-party error logging tools�

9. RESTful API Development� 11. Advanced Topics in Express.js�

10. File Upload and Download� 12. Testing and Deployment�

1. Introduction to React

React React

2. JSX and Component Fundamentals

3. State and Props

4. Handling Forms and User Input
a. Creating controlled components for form

 inputs

b. Validating form data and handling form

 submission

c. Implementing form validation and error

 handling�

a. Designing and implementing RESTful APIs

 with Express.js

b. Defining API routes and handling CRUD

 operations

c. Handling authentication and authorization

 for APIs�

a. Uploading and handling file uploads in

 Express.js

b. Downloading files and serving static assets

c. Working with file storage services

 (such as Amazon S3)�

a. WebSockets and real-time communication

 with Socket.io

b. Caching and performance optimization

 techniques

c. Implementing pagination and sorting in

 APIs�

a. Unit testing and integration testing in

 Express.js

b. Deploying Express.js applications to

 production servers

c. Configuring environment variables and

 managing deployment environments�

a. What is React and its key features?

b. Understanding React's component-based

 architecture

c. Setting up a development environment�

a. Introduction to JSX syntax and its relationship

 to JavaScript

b. Creating functional and class components

c. Understanding component lifecycle methods�

a. Managing state within React components

b. Passing data between components using props

c. Handling user events and updating state�

5. Lists and Keys

6. React Router

a. Rendering lists of data in React

b. Using keys for efficient list rendering

c. Updating lists and handling user interaction�

a. Introduction to React Router for

 client-side routing

b. Configuring routes and handling

 navigation

c. Passing parameters and accessing

 route data�
7. Component Styling and CSS

8. React Context

a. Styling React components using CSS

 classes and inline styles

b. Exploring CSS-in-JS libraries

 (such as styled-components)

c. Applying component-based styling patterns�

a. Managing state and sharing data across

 components using Context

�

1. Text Editors and Integrated Development

 Environments (IDEs):

Development Tools Development Tools

b. Creating and consuming context providers

 and consumers

9. React Hooks

11. React Forms and Validation Libraries

12. React Best Practices and Performance

 Optimization

10. React and API Integration

a. Introduction to React Hooks

 (useState, useEffect, useContext, etc.)

b. Managing state and side effects with Hooks

c. Custom Hooks and their reuse across

 components�

a. Fetching data from APIs using asynchronous

 functions

b. Handling API responses and updating

 component state

c. Implementing loading indicators and

 error handling�

a. Working with form libraries in React

 (such as Formik or React Hook Form)

b. Simplifying form handling and validation

 using form libraries�

a. Writing clean and reusable React code

b. Performance optimization techniques

 (memoization, lazy loading, etc.)

c. Debugging and error handling in React

 applications�

a. Visual Studio Code: A popular and highly

 customizable text editor with powerful

 features and extensions for web development.

b. Sublime Text: A lightweight yet feature-rich

 text editor with a large user base and

 extensive plugin ecosystem.

c. Atom: A hackable text editor built by GitHub,

 known for its flexibility and extensive package

 ecosystem.

d. WebStorm: A full-fledged IDE specifically

 designed for web development, providing

 advanced features and tools.�

2. Version Control Systems (VCS):

3. Package Managers:

a. Git: A distributed version control system

 widely used in web development to track and

 manage changes in code repositories.�

b. GitHub: A popular web-based hosting

 service for Git repositories, facilitating

 collaboration, code review, and version

 control.�

a. npm (Node Package Manager):

 The default package manager for Node.js,

 used to install and manage JavaScript

 packages and dependencies.

b. Yarn: A fast and reliable package manager

 developed by Facebook, offering

 enhancements over npm in terms of speed

 and stability.�
4. Task Runners:

a. Gulp: A popular task runner that automates

 repetitive tasks such as minification,

 concatenation, and compilation of

 frontend assets..�

5. Module Bundlers:

8. Browser Developer Tools:

9. Live Reloading and Code Editors:

6. CSS Preprocessors:

7. Task Runners:

b. Grunt: A JavaScript task runner used for

 automating build processes, running tests, and

 performing other development tasks

a. webpack: A widely used module bundler that

 bundles JavaScript modules, assets, and

 resources, enabling efficient loading and

 deployment of web applications.

b. Parcel: A zero-config bundler that automatically

 handles module bundling, code splitting, and

 asset management without requiring complex

 configurations.�

a. Sass: A popular CSS preprocessor that extends

 CSS syntax with features like variables, nesting,

 mixins, and functions.

b. Less: Another CSS preprocessor that simplifies

 writing and organizing CSS code by introducing

 variables, mixins, and other dynamic features.�

a. Babel: A widely used JavaScript compiler that

 transpiles modern JavaScript code into

 backward-compatible versions, allowing

 developers to use the latest language features

 while ensuring cross-browser compatibility.�

a. Chrome DevTools: Built into the Google

 Chrome browser, it provides a

 comprehensive set of tools for debugging,

 profiling, and inspecting web applications.

b. Firefox Developer Tools: Similar to Chrome

 DevTools, it offers a range of debugging and

 development tools for web developers

 using the Firefox browser.�

a. BrowserSync: A development server that

 enables live reloading and synchronization

 of code changes across multiple devices

 and browsers.

b. Live Server: A lightweight development

 server that provides live reloading

 functionality for HTML, CSS, and JavaScript

 changes.�

10. Linters and Code Formatters:
a. ESLint: A popular linter that helps enforce

 consistent coding styles, detect errors, and

 highlight potential issues in JavaScript code.

b. Prettier: A code formatter that automatically

 formats code according to predefined rules,

 ensuring consistent code style and

 formatting across projects.�

Address : O�ce No - 211, 2nd floor, Kakade Bizz Icon
Shivajinagar, Pune - 15

Address : O�ce No - 211, 2nd floor, Kakade Bizz Icon
Shivajinagar, Pune - 15

Student Reviews
A testament to the power of determination, hard work, and dedication.
Read what our alumni have to say about their experinece with us.

The instructors at IT SHAALA are undoubtedly experts in
their fields. They were not only knowledgeable but also
adept at conveying complex concepts in a clear and
understandable manner.

Komal Kale

Great learning experience at ITshaala, ITshaala provides
quality training and the best infrastructure. I got best
guidance from Sandeep sir. IT shaala helped me to shape
my carrier as IT professional.

Sandesh Dongardive

Had a fanstastic learning experience at IT Shaala, one of the
top institute for Backend Developer training. The institute offers
excellent training and top-notch infrastructure

Kishor Pol

I have been taking classes for a month now and I am getting
good knowledge here .Sandeep sir's teaching method is very
nice, nonteaching staff is also supportive .If you want to get
knowledge then this is the right place.

Pruthviraj Gaikwad

Student Placements

Vaibhav Kadam
FullStack Developer

Kedar Thakur
Software Engineer

Rohan Bhadke
FullStack Developer

Vinay Divekar
Sr.Associate Developer

Akshay Jadhav
Backend Developer

Avanti Urkude
FullStack Developer

Pratik Yawalkar
Software Developer

Pratik Gole
Software Engineer

To
ReactJs
Developer

To
ReactJs
Developer

Life at IT Shaala

"Embark on the journey of IT education with
enthusiasm, navigate through challenges with
determination, and emerge as a skilled
professional ready to make your mark
in the digital landscape. "

"In the lifecycle of an IT student, each phase
represents a stepping stone towards mastery.
From the eager anticipation of enrollment
to the relentless pursuit of knowledge, and finally,
the triumphant transition into a successful
career.

IT Shaala

Address : O�ce No - 211, 2nd floor, Kakade Bizz Icon
Shivajinagar, Pune - 15

For any query, Connect us at:

+91 88620 64497 info@itshaala.com

